
Looma: A Low-Latency PQTLS Authentication
Architecture for Cloud Applications

Xinshu Ma and Michio Honda
University of Edinburgh

Abstract—Quantum computers threaten to break the crypto-
graphic foundations of classical TLS, prompting a shift to post-
quantum cryptography. However, post-quantum authentication
imposes significant performance overheads, particularly for mu-
tual TLS in cloud environments with high handshake rates. We
present Looma, a fast post-quantum authentication architecture
that splits authentication into a fast, on-path sign/verify operation
and slow, off-path pre-computations performed asynchronously,
reducing handshake latency without sacrificing security. Inte-
grated into TLS 1.3, Looma lowers PQTLS handshake latency
by up to 44% compared to a Dilithium-2–based baseline. Our
results demonstrate the practicality of Looma for scaling post-
quantum secure communications in cloud environments.

I. INTRODUCTION

Quantum computers are no longer a mere theoretical pos-
sibility. Recent advances from Google, IBM, and Oxford [1],
[2], [3], [4] demonstrate steady progress toward scalable, error-
corrected quantum hardware, making large quantum machines
increasingly plausible. At the same time, widely deployed
public-key cryptosystems rely on mathematical problems (e.g.,
integer factorization) that are intractable for classical comput-
ers but efficiently solvable on a sufficiently powerful quantum
computer. For example, a recent study from Google shows that
a quantum computer with one million logical qubits could
break RSA-2048—the most widely used digital signature
algorithm—in under a week [5]. The same threat extends to
other schemes such as ECDSA and ECDHE, which today
underpin authentication and key exchange in TLS.

This looming risk is driving a global shift toward post-
quantum cryptography (PQC), a family of algorithms designed
to withstand quantum attacks. Since TLS is the backbone of
secure communication on the public Internet and in the cloud,
there is an urgent need to transition from classical TLS to
Post-Quantum TLS (PQTLS). However, PQC schemes gener-
ally impose substantially higher computational and bandwidth
costs during the handshake than classical algorithms, creating
a major deployment barrier, especially at cloud scale.

Modern cloud environments further amplify this challenge.
The move from monolithic architectures to microservices and
serverless functions means that connections are short-lived and

established frequently, with each connection triggering a fresh
TLS handshake. At the same time, cloud operators employ
mutual authentication (mTLS), moving beyond the server-
only authentication that dominates the public Internet. The
combined effect is a dramatic increase in handshake-related
cryptographic cost, further exacerbated by the overheads of
post-quantum (PQ) schemes.

Latency is a primary concern for cloud-based applica-
tions [6]. While industry leaders such as Amazon [7], Cloud-
flare [8], [9], and Google [10], [11], [12] have made important
progress toward efficient PQTLS—primarily by optimizing
key exchange—authentication remains a significant source of
high latency, particularly in mTLS deployments.

Motivated by this gap, we introduce Looma1, a gen-
eral framework for cloud applications that reduces PQTLS
handshake latency by integrating the online/offline signature
paradigm into the TLS workflow. Looma replaces the on-
path PQ signature with an online/offline variant, splitting
authentication into: (1) a fast on-path sign/verify operation
executed during the handshake, and (2) slow off-path precom-
putations performed asynchronously. A dedicated KeyDist ser-
vice manages the distribution of precomputed keys. Compared
to PQTLS with Dilithium-2, Looma reduces TLS handshake
latency by up to 37 % at P50 and 42 % at P99 with server-only
authentication, and up to 44 % at P50 and 42 % at P99 with
mutual authentication. Looma does not depend on a specific
signature algorithm and can be instantiated with different PQ
signature schemes (e.g., Dilithium-2 or Falcon); in this paper,
we use Dilithium-2 as a representative instantiation.

Our contributions are the following:
1) An in-depth analysis of mTLS handshake latency, demon-

strating the need for accelerated authentication.
2) The design of Looma, a fast PQTLS authentication archi-

tecture that decouples expensive authentication from the
latency-critical handshake path and safely falls back to
standard verification when the fast path is unavailable.

3) A parameter analysis of Looma, identifying configurations
suitable for common deployment scenarios.

4) An implementation of Looma fully integrated into TLS 1.3
by extending the Picotls library, enabling straightforward
integration into Picotls-based applications and protocols.

5) An extensive evaluation showing that Looma consistently
outperforms PQ signature algorithms, even classical ones,
particularly for mutual authentication in PQTLS.

1Low-latency online/offline mutual authentication

Network and Distributed System Security (NDSS) Symposium 2026
23 - 27 February 2026 , San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240074
www.ndss-symposium.org

II. MOTIVATION

A. Why Fast (PQ)TLS Handshake Matters in the Cloud?

TLS handshake performance is critical in modern cloud
environments for several reasons.

First, microservice architectures—prevalent in cloud plat-
forms powering social media, ride-sharing, and privacy-
preserving analytics [13], [14], [15], [16]—break applications
into many small, frequently interacting services. Each network
connection setup typically requires a new TLS handshake, and
the ephemeral, autoscaled nature of containers and pods [17]
leads to high handshake rates. Because instances are frequently
created, destroyed, and rescheduled, techniques like TLS ses-
sion resumption are often ineffective due to limited state reuse.

Second, service mesh deployments (e.g., Istio [18], Link-
erd [19], ServiceRouter [20]) and the sidecar pattern intro-
duce extra proxy hops that terminate and re-originate mTLS
between adjacent proxies, increasing the number of TLS
connections (and thus handshakes) along an end-to-end path.

Third, latency-sensitive, short-lived flows dominate inter-
service communication in the cloud [21], [22]. Many con-
nections transfer application data for only a small fraction of
their lifetime, so handshake latency accounts for a substantial
portion of their total time.

Finally, modern datacenter networks are engineered for low
fabric latency (e.g., < 50µs) and minimal buffering [23],
[24], shifting bottlenecks to the hosts where cryptographic op-
erations, especially PQ handshakes, can dominate application
delay and resource usage.

In short, the scale, churn, and short-flow patterns of cloud-
native systems have transformed handshake overhead from a
negligible concern on the Internet into a critical source of
latency. Fast (PQ)TLS handshake is now essential for efficient
cloud services.

B. Existing TLS Handshake Accelerations

The optimization of TLS handshake performance—
particularly for cryptographic operations—has garnered sig-
nificant research attention. Existing approaches fall into three
primary categories.

a) Offloading: Offloading classic asymmetric crypto-
graphic operations to specialized hardware can improve hand-
shake performance, but faces notable constraints. Solutions
such as SSLShader [25] leverage GPUs, and Kim et al. [26]
propose offloading TLS handshakes to SmartNICs. Canal
Mesh [27], deployed in Alibaba Cloud, employs a centralized
key server to handle asymmetric operations for mTLS. While
offloading can boost handshake throughput by freeing host
CPU cycles, it does little to reduce handshake latency due to
extra data transfer over the PCIe bus or network. Additionally,
these approaches require trusting the offload device and heav-
ily depend on hardware capabilities, thereby reducing their
general applicability.

b) Network Protocol Enhancement: Protocol-level mod-
ifications can reduce the number of network round-trips re-
quired for TLS handshakes. Examples include TLS 1.3’s

1-RTT handshake [28] and session resumption [29], both
of which simplify connection setup to lower latency. Ap-
proaches such as ZTLS achieve zero-RTT handshakes by pre-
distributing certificates and public key shares via the DNS
server, though this requires stronger trust assumptions [30]. PQ
proposals like KEMTLS [31] replace signature-based authenti-
cation with key encapsulation mechanisms as KEM is slightly
faster than PQ signature algorithms, achieving quantum-safe
mutual authentication with reduced bandwidth, but requiring
one additional RTT. However, as highlighted in § II-A, the
main concern in modern datacenters is not network fabric
latency, but the processing delay of cryptographic operations at
the hosts. Thus, protocol enhancements alone are insufficient
to address handshake latency in the cloud.

c) Cryptographic Operation Optimization: Substantial
performance gains are possible by optimizing cryptographic
primitives at both the mathematical and implementation level.
Recent advances have accelerated classical algorithms such as
X25519 and Ed25519 using techniques like the Montgomery
ladder combined with AVX-512 vectorization [32]. In the
PQ setting, highly optimized implementations of SNTRUP761
have significantly improved key exchange performance in
OpenSSL [33]. Notably, most of these works focus on ac-
celerating key exchange.

Orthogonal to these approaches, Looma targets handshake
acceleration by decoupling expensive PQ authentication from
the latency-critical path, achieving significant reductions in
handshake latency while preserving protocol compatibility.

C. What We Focus: PQ Authentication and Costs

a) mTLS: TLS is the de facto protocol for end-to-end
secure channels on the public Internet and in modern cloud
infrastructures. While typical Internet connections authenticate
only the server, cloud deployments often require mutual TLS.
Mutual authentication (1) blocks unauthorized access via
strict identity verification, (2) eliminates man-in-the-middle
opportunities during key exchange, and (3) ensures endpoints
connect only to legitimate peers, which is critical for sensitive
in-boundary data and service interactions.

The mTLS authentication process in Figure 1 uses X.509
certificates and digital signatures to establish trust during the
TLS handshake. The Server Cert and Client Cert
messages carry certificates that bind each endpoint’s public
key to its identity via signatures from a trusted Certificate
Authority (CA), whose public key is pre-installed in the peer’s
trust store. The peer verifies these certificates using the CA’s
public key, then authenticates the CertVerify message by
using the public key from the validated certificate to check the
signature over the handshake transcript.

The orange-highlighted messages in Figure 1 denote
the three extra messages required in mTLS compared to
server-side authenticated TLS (sTLS2). The server sends a
CertRequest message to request client authentication. All

2We use sTLS to denote server-only authentication and mTLS to denote
mutual authentication throughout the paper.

2

Client Server

Client Hello (+key share)

TCP connection

Server Hello (+key share)
Server Cert

CertVerify

Finished

Client Cert
CertVerify

Finished

Secure Communications

Verify Identity

Prove Identity

Prove Identity

Verify Identity CertRequest

Fig. 1: Mutual authentication in mTLS handshake.

TABLE I: Client-side and server-side sTLS and mTLS hand-
shake components. (•: performed, ◦: not performed)

Handshake Keygen+ex Verify cert Sign Verify
sTLSc • • ◦ •
sTLSs • ◦ • ◦
mTLSc,s • • • •

certificates are assumed to be pre-issued before the handshake
begins, so constructing certificate messages does not incur ad-
ditional asymmetric cryptographic cost during the handshake.
However, the client must perform an extra signing operation to
produce the CertVerify message. The server, in turn, incurs
two extra verification operations: one to validate the Client
Cert and another to verify the CertVerify signature.
Table I summarizes the main cryptographic operations in sTLS
and mTLS at both sides.

b) Cost Breakdown: While mutual authentication
strengthens security, it introduces non-trivial computational
overhead. As Figure 2 shows, cryptographic operations
account for 30%–68% of total sTLS handshake latency
and 54%–70% of mTLS latency across different signature
schemes, with asymmetric operations (outlined in Table II)
dominating the cost. These measurements are taken locally
(no network) to isolate CPU overheads, and we use the
same key exchange scheme across all tests to highlight the
authentication cost of different signature schemes. The high
fraction of asymmetric operations in the mTLS handshake
indicates that accelerating these operations is an effective
means for reducing end-to-end mTLS handshake latency.

In mTLS, the additional client-side Sign operation further
shifts total handshake time towards signing latency. For ex-
ample, ECDSA’s lowest signing latency (14.9 µs) makes it
the most efficient option among the schemes we evaluate.
Dilithium-2, despite 47% faster verification than ECDSA,
incurs a higher signing cost (51.7 µs, 3.5× slower), further
increasing mTLS handshake latency. Falcon-512’s 149.2 µs
signing pushes total mTLS latency to around 650 µs, i.e.,
about 80% higher than the 360 µs for ECDSA. Although these
differences are on the microsecond scale, they are critical in
low-latency datacenters with short-lived connections.

Prior accelerations (§ II-B) do not close this gap. This

68% 53%

39% 30%

other crypto

La
te

nc
y

(µ
s)

0

200

400

ecdsa
dil2 falcon

rsa

(a) sTLS

70% 62%

58%
54%

other crypto

La
te

nc
y

(µ
s)

0

500

ecdsa
dil2 falcon

rsa

(b) mTLS
Fig. 2: Client-side latency incurred by cryptographic and other
operations in the handshake process with ECDSA, Dilithium-
2, Falcon-512, and RSA-2048 signatures.

TABLE II: Overheads of asymmetric cryptographic operations
in TLS handshake. (•: post-quantum, ◦: classical)

Operation Algorithm Latency (µs) PQ Library

Keygen+ex ECDHEa 45.20 ◦ OpenSSL
KEMb 74.70 • OQS

Verify cert RSA-2048 17.22 ◦ OpenSSL
Dilithium-2 26.27 • OQS
Falcon-512 30.7 • OQS

Sign
ECDSA 14.92 ◦ OpenSSL
RSA-2048 200.37 ◦ OpenSSL
Dilithium-2 51.74 • OQS
Falcon-512 149.2 • OQS

Verify
ECDSA 40.18 ◦ OpenSSL
RSA-2048 15.32 ◦ OpenSSL
Dilithium-2 21.27 • OQS
Falcon-512 28.3 • OQS

a ECDHE is instantiated with secp256r1.
b KEM is instantiated with Kyber-512.

motivates Looma, which splits expensive authentication into
fast on-path sign/verify, and slow off-path pre-computations,
thereby preserving cloud latency targets while enabling quan-
tum resistance during the TLS handshake.

III. PRELIMINARIES

A. Digital Signatures

Digital signatures are fundamental cryptographic primi-
tives that ensure the authenticity and integrity of digital
messages. A signature scheme is a tuple of algorithms
(KeyGen,Sign,Verify) together with an associated message m.
(pk, sk)← KeyGen(κ): Given the security parameter κ, the

key-generation algorithm outputs a private signing key
sk, and a public verification key pk.

σ ← Sign(m, sk): On input a message m, the signing algo-
rithm outputs a signature σ under sk associated with m.

0/1← Verify(m,σ, pk): On a message-signature pair (m,σ),
the verification algorithm outputs a bit b under pk, where
b = 1 signifies accept and b = 0 signifies reject.

Unlike classical signature schemes such as RSA and
ECDSA—which succumb to Shor’s algorithm on a sufficiently
powerful quantum computer—PQ signatures derive their secu-
rity from mathematical problems believed to remain difficult
even for quantum adversaries. Among the various PQ families,
the National Institute of Standards and Technology (NIST)

3

has selected two primary classes for standardization: lattice-
based and hash-based signatures. Its three finalist algorithms
are Dilithium (lattice-based) [34], Falcon (lattice-based) [35],
and SPHINCS+ (hash-based) [36]. These schemes now define
the baseline for quantum-resilient authentication.

B. Online/offline Signature Paradigm

The online/offline signature paradigm, pioneered by Even,
Goldreich, and Micali (EGM) [37], [38], transforms any
conventional, computation-heavy signature scheme into a two-
phase process: 1) offline (or pre-computation) phase that
executes heavy computations, independent of any message to
be signed, and 2) online phase that is typically very fast when
the message is ready. It typically uses a one-time signature
as a building block: highly secure, but limited to signing a
single message. The essence is to apply (offline) the ordinary
signing algorithm to authenticate a lightweight one-time public
key, and then to apply (online) the one-time signing algorithm,
which incurs only negligible latency. This division retains the
robustness of the ordinary signature scheme while reducing
per-message latency to a negligible level.

Formally, an online/offline signature scheme is a tuple of al-
gorithms (KeyGen,PreSign,FastSign,Verify) with a message
m.
(pk, sk)← KeyGen(κ): Given the security parameter κ, the

key-generation algorithm outputs a private signing key
sk, and a public verification key pk.

ρ← PreSign(sk): On input a signing key sk, the pre-signing
algorithm outputs a pre-signing state ρ.

σ ← Sign(m, ρ, sk): On input a message m, the signing al-
gorithm outputs a signature σ under sk and associated
with ρ.

0/1← Verify(m,σ, pk): On a message–signature pair (m,σ),
the verification algorithm outputs a bit b under pk, where
b = 1 signifies accept and b = 0 signifies reject.

C. Winternitz One-Time Signature Plus

The WOTS+ hash-based signature scheme—formalised by
Hülsing et al.[39]—sharpens the classical Winternitz approach
by tightening security proofs and shrinking both signature and
public-key sizes relative to earlier one-time variants. Thanks
to this efficiency-security balance, WOTS+ has been adopted
as the leaf-level signing algorithm in two flagship hash-
based, PQ signature schemes: SPHINCS+ [40] and XMSS
(short for eXtended Merkle Signature Scheme) [41]. XMSS,
standardised by the IETF in 2018, is regarded as the most
mature member of the hash-based signature family, and its
deployment experience further attests to the practicality of
WOTS+ as a foundational component.

Figure 3 illustrates the core idea of the WOTS+ signa-
ture scheme, which relies on applying a fixed number of
iterations of a chaining function (denoted by c, typically
instantiated as a cryptographic hash function) starting from
random inputs. These random values form the secret key:
SK = (sk1, sk2, sk3). The corresponding public key PK =
(pk1, pk2, pk3) is derived by applying the chaining function

sk1

b1 b2 b3

c1c0 c2 c3

sk2
sk3

pk1
pk2
pk3

Message C

① concatenate m and checksum C

② divide into chunks

signkey gen

③ map to chain values
σ = (cb1, cb2, cb3)

Fig. 3: A toy example of WOTS+ signature scheme: key
generation and signing.

w − 1 times to each secret-key element. The Winternitz
parameter w is tunable, trading signature size against sign-
ing/verification cost.

To sign a message m, WOTS+ first encodes the message
and its checksum in base-w (with w = 4 in this example),
producing a sequence of integers that is then split into a certain
number of blocks. Each block value determines how many
times the chaining function is applied to the corresponding
secret key component. In the illustrated example, the base-w
encoding yields three chunks (b1, b2, b3) = (1, 2, 3), and the
signature is computed by applying the chaining function bi
times to ski. Thus, the resulting signature is constructed as
σ = (cb1(sk1), cb2(sk2), cb3(sk3)). To verify a signature,
each element of σ is hashed the required number of times to
get to w − 1.

IV. DESIGN SPACE

A. TLS Ecosystem in the Cloud

The security and communication landscape within data-
centers—particularly for microservices and serverless func-
tions—differs markedly from that of the broader Internet. Two
characteristics are especially relevant for our approach:

a) Narrow, Stable Peer Sets: Unlike the Internet, where
endpoints can interact with a vast number of unknown parties,
datacenter services typically communicate with a small, stable
set of peers. Production studies show that, for each user
request, Alibaba’s large-scale microservices backend has a
median fan-out of just 2 and rarely exceeds 10 downstream
calls [42]. Meta’s social-media stack is slightly broader (me-
dian 6–8), but over 95% of requests still reach fewer than
20 services [42]. In serverless environments, most workflows
involve 1–5 functions and typically interact with only a
handful of managed services (such as storage, databases, or
queues) [43]. This fixed and limited peer set enables opportu-
nities for optimizations such as pre-computing cryptographic
material and caching verification keys to reduce authentication
overhead.

b) Separation of Network and Application Logic: A
defining feature of modern microservice and serverless ar-
chitectures is the decoupling of network functions—such as
TLS termination, certificate management, and traffic monitor-
ing—from application logic. These tasks are routinely handled
by infrastructure-level proxies or service mesh components,
which operate independently from application code.

4

Our design builds on this architectural separation: by shift-
ing expensive authentication operations off the latency-critical
path and into background tasks managed by independent
services, we enable asynchronous cryptographic preparation
and efficient key dissemination. This loosely coupled yet
well-defined structure is particularly well-suited for cloud
environments, allowing secure, scalable mutual authentication
without impeding application performance or developer agility.
Threat model. We assume standard primitives remain sound:
AEAD record protection provides confidentiality and cipher-
text integrity; hash functions are collision resistant; and digital
signatures are existentially unforgeable.

Any individual microservice may be taken over through
remote-code-execution flaws, container escape, or insider mis-
use. A compromised service instance can then forge or misuse
credentials, impersonate peer services, and exfiltrate or tamper
with sensitive data. With a single foothold the attacker effec-
tively gains power [44]: they can observe, intercept, replay,
delay, modify, or inject packets, enabling eavesdropping and
man-in-the-middle attacks during session establishment.

We trust the underlying cloud substrate (hardware, firmware,
hypervisor, host OS) and assume that data-plane helpers (i.e.,
sidecar proxies) and control-plane services (i.e., service dis-
covery, the internal CA, orchestrators, etc) start life correctly
configured and uncompromised. Yet, following a zero-trust
philosophy, we do not grant them perpetual trust: any such
component might later be subverted via exploits, misconfigu-
ration, insider abuse, or supply-chain attacks.

B. Design Scope

Rather than pursuing a general-purpose authentication solu-
tion applicable to diverse settings (such as the open Internet,
or mobile networks), we target designs that deliver an optimal
trade-off tailored to modern datacenters. We focus exclusively
on TLS-secured communications within the same datacenter
and explicitly exclude connections between external clients
and cloud applications or gateways. To meet the demands
of latency-sensitive workloads, our proposed Looma scheme
must be optimized specifically for performance and scalability
within this context. We aim to provide an industry-standard
security level (classical 128-bit security and NIST Level 1 PQ
security) while improving application-level performance.

Other secure communication schemes that operate at dif-
ferent layers or target distinct deployment models are orthog-
onal. IPsec [46] functions at the network layer, establishing
operator-managed host-to-host tunnels within the trust domain.
TLS with pre-shared keys (PSK) [47], used for session re-
sumption, reduces cryptographic overhead but sacrifices for-
ward secrecy and does not apply to full handshakes. QUIC [48]
builds upon the TLS 1.3 handshake at the transport layer.

C. Design Choice

While online/offline signatures are well-studied in theory,
real-world deployments have largely focused on constrained
embedded devices [49], [50]. Looma demonstrates how this
paradigm can dramatically reduce PQTLS handshake latency

and boost aggregate throughput in high-performance cloud
environments.

Among the classical frameworks for converting a standard
signature scheme into an online/offline variant—namely, the
Even–Goldreich–Micali (EGM) construction [37] using one-
time signatures, and the Shamir–Tauman (ST) approach [45]
relying on trapdoor hashes (see Table III)—we deliberately
choose the hash-only EGM pathway. This choice leverages
cryptographic hash functions already trusted and widely used
in TLS, introducing no new cryptographic assumptions or
compliance requirements. In contrast, ST-style variants, such
as those combining Falcon-512 with lattice-based trapdoor
hashes [51], though potentially offering shorter signatures,
depend on newer and less-vetted primitives.

As a concrete realization, we wrap Dilithium-2 with a
WOTS+ one-time signature layer. We select Dilithium-2 as
it is currently the fastest PQ signature scheme and NIST’s
recommended default; both Dilithium-2 and WOTS+ are part
of the NIST PQ portfolio and have undergone extensive pub-
lic scrutiny. The resulting Dilithium-2/WOTS+ combination
maintains purely hash-based PQ security and, once verification
keys are pre-distributed, incurs only a modest size over-
head—making it a practical and defensible first step toward
online/offline authentication in datacenter TLS. Note that the
latency improvement advantages cannot be delivered during
TLS session resumption because authentication is omitted.

V. LOOMA DESIGN

We present Looma’s high-level architecture (§ V-A), empha-
sizing its low-latency authentication path (§ V-B), which accel-
erates session request handling by partitioning the otherwise
expensive signing operation. We then detail the background
key-provisioning mechanism (§ V-D), responsible for continu-
ously supplying fresh cryptographic material to the foreground
sign/verify operations executed in the handshake process.

A. Looma Architecture

Figure 4 illustrates the integration of the Looma architecture
into the mTLS handshake. The handshake begins with the
client sending a ClientHello message that advertises sup-
port for the Looma scheme. In response, the server transmits a
ServerHello, optional encrypted extensions, its certificate,
and a CertVerify message containing a lightweight Looma
signature computed over the handshake transcript. The client
similarly follows up by presenting its own certificate and cor-
responding lightweight Looma signature in a CertVerify
message. Both endpoints subsequently exchange Finished
messages and start encrypted application data transfers.

To minimize handshake latency, Looma shifts computation-
ally expensive PQ signature operations away from the critical
path. Internally, each endpoint is organized into two logical
planes: a foreground plane, which performs latency-critical
operations such as rapidly issuing one-time WOTS+ signa-
tures (FastSign) and quickly authenticating peer signatures
(FastVerify), and a background plane, which is responsible

5

TABLE III: Online/offline signature frameworks

Framework Idea Pros / cons

Even–Goldreich–Micali (EGM) [37] Pre-sign a one-time signature (OTS) on a random value offline;
in the online phase sign that value with a long-term scheme.

Very simple; relies only on hash-based OTS, but
the combined signature is longer.

Shamir–Tauman (ST) [45] Pre-compute a trapdoor hash; the online phase signs the hash
output with a long-term scheme.

Shorter online signature, but needs a secure
trapdoor-hash construction.

Client

ClientHello
+ key share
+ signature algo
 Looma

ServerHello
+ key share
[Encrypted Extensions]
[Certificate]
 Server certificate
[CertVerify]
 Looma signature
[CertRequest]
 Fallback mode

{Certificate}
 Client certificate
[CertVerify]
 Looma signature
[Finished]

[Finished]

Application data

Server

Background Foreground Foreground Background

KeyGen

KeyFetch

FastVerify

FastSign

Server
WOTS⁺ pk
Client
WOTS⁺ sk

KeyDist

Update
signed pk

Fetch
others pk

Update
signed pk

Fetch
others pk

FastSign
Server
WOTS⁺ sk

FastVerify
Client
WOTS⁺ pk

KeyDist

KeyFetch

KeyGen

Fig. 4: mTLS 1.3 handshake process with Looma framework for authentication. Dashed
green box/text indicates Looma integration.

WOTS signature+ Dilithium2 sig. +

Merkle root + proof

Looma signature — dual-sig
Nonce +

PK_id

Fig. 5: Layout of Looma signatures
when using dual-sig mode.

WOTS signature+
Looma signature — hybrid hit

Nonce +

PK_id

Looma signature — hybrid miss

WOTS signature+ Dilithium2 sig. +

Merkle root + proof

Nonce +

PK_id

Fig. 6: Layout of Looma signatures
when using hybrid mode.

for proactive key management. The background plane op-
erates two maintenance tasks concurrently: KeyGen, which
continuously generates local WOTS+ secret keys and uploads
corresponding signed public keys, and KeyFetch, which regu-
larly retrieves updated public keys from peers via the KeyDist
service.

KeyDist is a storage-based service tailored for distributing
batches of pre-generated and signed cryptographic public keys
within cloud or datacenter microservice environments. By
design, it serves solely as a repository for freshly signed public
keys by each endpoint, relying on cryptographic verification
rather than KeyDist-side trust. This separation of concerns
allows Looma to achieve smooth, low-latency handshakes
while providing scalable and secure public-key distribution.

Each service endpoint is provisioned with a Dilithium-2 key
pair (PKd2, SKd2). The public key PKd2 is submitted to the
internal CA to obtain an X.509 certificate. In Looma, we accel-
erate the mTLS handshake by replacing the computationally
expensive Dilithium-2 signing and verification operations with
a lightweight online/offline signature paradigm, preserving PQ
security while sharply reducing authentication latency.

B. Foreground Plane: Fast Authentication

The foreground plane provides a synchronous interface
optimized for rapid signature generation and verification over
the handshake transcript (HT), thus ensuring minimal latency
during handshake processing.

1) Signing Operation: To achieve fast, on-demand au-
thentication, the foreground plane relies on a pool of pre-

generated WOTS+ key pairs prepared by the background plane.
Consequently, secret keys and the corresponding peer’s public
keys are readily available in their respective queues prior to
the handshake initiation.

When generating a CertVerify message, the signer
dequeues a fresh WOTS+ secret key (SK) from its local key
queue and computes a lightweight WOTS+ signature:

σ ← FastSign(HT, SK, r)

where HT is the fixed-length handshake transcript, and r is
a nonce associated with the signature. The resulting signature
σ is then embedded into the outgoing handshake message.

2) Verification Operation: Upon receiving a peer’s
CertVerify, the verifier employs a pre-cached WOTS+

public key (PK) to efficiently verify the authenticity of the
incoming signature:

0/1← FastVerify(HT, σ, PK, r)

Specifically, the verification process leverages the properties of
the WOTS+ scheme by reconstructing an expected public key
PK∗ from the received signature σ, the handshake transcript
HT , and the nonce r. The verifier then compares this derived
public key PK∗ with the pre-cached public key PK. The
algorithm outputs a binary decision bit b, where b = 1
indicates a successful match (acceptance), and b = 0 indicates
a mismatch (rejection).

6

C. Fallback Strategy

We now consider the key fallback scenario: a cache miss,
where the verifier enters the handshake without the peer’s
cached public key. This can happen on the first client–server
contact, or when the server fails to refresh a client’s key in
time. In practice, cache misses are rare on the client side
because the client initiates connections and can prefetch the
server’s public key before starting the handshake. Therefore,
cache misses primarily arise in mTLS when the server lacks
the client’s public key at handshake time.

We propose two distinct solutions to handle such cache-miss
scenarios, each with clear trade-offs.
Option 1: Dual-Signature Mode. As illustrated in Figure 5,
each Looma signature in dual-signature mode bundles four
main components: (i) a WOTS+ signature on the HT , (ii)
a Merkle-tree inclusion proof for the corresponding WOTS+

public key PK, (iii) a Merkle-tree root, and (iv) a Dilithium-
2 signature on the Merkle-tree root. The Dilithium public
key PKd2 used to authenticate the root is carried in client’s
Certificate.

On the server side, verification proceeds in two cases. First,
the server checks whether it already holds a cached, pre-
verified WOTS+ public key with PK_id. If present (cache-hit),
it directly verifies the WOTS+ signature against the cached
public key using (FastVerify), without re-checking the Merkle
tree or the Dilithium-2 signature.

Otherwise (cache miss), the server falls back to full dual-
signature verification. It (1) verifies the Dilithium-2 signature
on the Merkle-tree root using PKd2 from the Certificate,
(2) recomputes a candidate WOTS+ public key PK∗ from
the received WOTS+ signature and message, and (3) uses
the included Merkle-tree proof to check that PK∗, after
compression to a leaf, is consistent with the authenticated
Merkle-tree root. If all checks succeed, the server accepts the
Looma signature.

This dual-signature strategy guarantees successful authenti-
cation even when the public-key cache hit rate is 0%. However,
it incurs a fixed per-handshake overhead consisting of three
fallback components: the Dilithium-2 signature, the Merkle-
tree root, and the Merkle-tree inclusion proof, whose size is
log2 B × 32 bytes for a binary Merkle tree with B leaves and
32-byte hash values. For instance, a tree with B = 1024 leaves
yields a proof size of 320 bytes, so the dual-signature fallback
components alone contribute roughly 2.4 K B of additional
data per handshake. This overhead is incurred even in high
cache-hit regimes, where the cached public key would in
principle make the fallback path unnecessary, and thus can
lead to avoidable bandwidth costs.
Option 2: Bloom-Filter Hybrid Mode. To mitigate the
bandwidth overhead of the dual-signature mode, we introduce
a more dynamic hybrid strategy. In this mode, each server
maintains a Bloom filter [52] over the IDs of peers whose
WOTS+ public keys are currently cached. At the start of an
mTLS handshake, the server serialises this Bloom filter into
a compact bitstring and sends it to the client in a dedicated

TLS extension carried by the CertRequest message that
initiates client authentication requirement.

Upon receiving the CertRequest, the client checks mem-
bership for its own ID. If the client’s ID is not contained in
the Bloom filter (a cache miss), it sends a dual-signature as
the hybrid-miss Looma signature that includes the WOTS+

signature, the Merkle-tree proof, the Merkle-tree root, a nonce,
and a public-key identifier, as depicted in Figure 6. If the
client’s ID is contained in the Bloom filter (a cache hit), the
client instead sends a streamlined hybrid-hit Looma signature
containing only the WOTS+ signature, a nonce, and the public-
key identifier.

Considering typical cloud communication patterns—where
services interact frequently with a relatively small and stable
set of peers—a compact Bloom filter (tens of bytes in our
settings) easily fits within a single CertRequest extension
(see § VII-A).

In rare cases of false positives, where the Bloom filter
indicates a cached key when it is not actually cached, the
server detects the mismatch during verification, issues a
bad_offline_sig alert, and gracefully falls back to a
conventional re-handshake using standard Dilithium-2 authen-
tication. This approach ensures robustness, prevents connec-
tion setup failure, and retains performance in the typical,
high-cache-hit scenarios. The fallback mode is carried as an
extension in the CertRequest message (Figure 4).

D. Background Plane: Key Provisioning

To support seamless foreground operations, the background
plane manages proactive distribution and retrieval of WOTS+

key materials. Specifically, each service endpoint periodically
uploads fresh batches of signed public keys to the KeyDist
service, while also fetching updated public keys that have been
uploaded by peer endpoints.

1) KeyDist Service: The KeyDist service is designed as
a simple storage-based node, analogous to DNS servers. By
minimizing trust assumptions, KeyDist does not rely on inter-
nal confidentiality or data-integrity guarantees beyond basic
operational correctness and data availability. Each endpoint
establishes a long-term secure channel with KeyDist, authenti-
cated by standard (non-online/offline) signature schemes, since
these connections rarely require re-handshake.

Cryptographic security instead stems from the individual
endpoints. All public-key materials uploaded to KeyDist are
digitally signed by their respective issuers using a standard
multi-use, PQ signature scheme (e.g., Dilithium-2), indepen-
dent of KeyDist. Service endpoints downloading these key
materials subsequently verify their authenticity via embedded
public keys from certificates, ensuring end-to-end integrity and
authenticity even if KeyDist is compromised or misbehaving.

2) Key Generation: Each endpoint maintains logical group-
ings of peer services, called verifier groups, that share com-
mon sets of public keys. Initially, each endpoint creates
a default group containing all peer services. Each verifier
group has its own queue of WOTS+ secret and public key
pairs. When the queue size for a verifier group falls below

7

a predetermined threshold S, the background plane proac-
tively generates a fresh batch of WOTS+ key pairs. These
public keys are organized into a Merkle tree, whose root
is signed using a Dilithium-2 private key (SKd2). The end-
point then constructs a key record containing: (i) the list of
public keys, (ii) the issuer’s certificate, (iii) metadata such
as verifier-group identification and key validity periods, and
(iv) a Dilithium-2 signature over a hash of fields (i)–(iii).
The resulting record is uploaded to KeyDist in the form of
⟨KeyUpdate, keyrecord, owner id⟩ tuple.

Upon receiving the update, KeyDist performs several val-
idation steps before storing the record: verifying the end-
point’s certificate, reconstructing the Merkle tree structure,
and validating the attached Dilithium-2 signature. Any failed
validation results in the KeyDist service rejecting the update,
ensuring that only authenticated and properly constructed
public-key records are disseminated.
Adaptive Key Generation. Endpoints adaptively group their
peer services based on interaction frequency. Peers that rarely
communicate, termed cold peers, share a common pool of
public keys. In contrast, peers involved in frequent interac-
tions, called hot peers, each form individual verifier groups and
receive dedicated key sets. This adaptive grouping prioritizes
resources for frequently accessed keys, thereby reducing the
number of key-fetch operations.

3) Key Fetching: Endpoints periodically request updated
public keys from KeyDist by sending requests formatted
as ⟨KeyFetch, requester id, owner id⟩. Since the endpoint’s
identity has been authenticated when establishing the long-
term TLS connection, KeyDist directly responds by return-
ing the list of accessible keyrecord entries relevant to the
requester’s identity. Upon receipt, the endpoint independently
verifies the authenticity of each record and caches the validated
public keys for subsequent foreground-plane operations.

VI. SECURITY ANALYSIS

We now analyze the security of the Looma authentication
scheme, which combines a long-term Dilithium-2 key pair
with per-handshake one-time WOTS+ signatures. Specifically,
we show that this construction achieves existential unforgeabil-
ity under adaptive chosen-message attacks (EUF-CMA) [53].
We consider an adversary that may (i) trigger honest endpoints
to perform the FastSign operation on chosen handshake tran-
scripts and (ii) observe, replay, or inject arbitrary handshake
messages. Our security goal is to preserve EUF-CMA with
NIST level 1 PQ security, even if the KeyDist service becomes
malicious or compromised.
Looma Security. To successfully forge a Looma signature,
the adversary must produce a tuple (HT a, σa, PKa, ra) that
passes verification: FastVerify(HTa, σa,PKa, ra) = 1. Verifi-
cation succeeds only if the following conditions are simulta-
neously satisfied:

1) Dilithium-2 authentication: PKa is authenticated by a
Merkle-path proof ending in a Dilithium-2 signature,
which itself validates correctly under the legitimate end-
point’s certificate.

2) WOTS+ authenticity: σa is a valid WOTS+ signature for
the handshake transcript HT a under the public key PKa.

3) Fresh-key enforcement: PKa is an unused one-time key
that remains within its validity period, enforced via local
indexing.

A successful forgery event implies the occurrence of at least
one of the following security breaches:
E1. Forgery of Dilithium-2 signature: The adversary pro-

duces a malicious public key PKa whose Merkle-tree
root passes the Dilithium-2 check without a valid signa-
ture from the legitimate endpoint. This scenario consti-
tutes a direct break of Dilithium-2’s EUF-CMA security.

E2. Forgery of WOTS+ signature: The adversary manages
to generate a valid WOTS+ signature σa under an au-
thentic, legitimately distributed PKa without knowing
the corresponding secret key. This violates the EUF-CMA
security property of WOTS+.

E3. Malicious manipulation of KeyDist: The adversary
modifies stored keys on KeyDist. Since KeyDist stores
only cryptographically signed key records, any attempt
to inject malicious keys in KeyDist corresponds to E1
(forgery of the Dilithium-2 signature).

Hence, any successful forgery must violate either E1 or
E2. Since the Dilithium-2 signature scheme is proven EUF-
CMA-secure under standard lattice hardness assumptions [34],
event E1 has negligible probability. Similarly, the WOTS+

scheme has a formal EUF-CMA security proof relying on the
second-preimage resistance, undetectability, and one-wayness
of the underlying hash function family [39]. In our instance,
we use the Haraka hash function [54], which satisfies all
these cryptographic properties and has been widely studied
in similar PQ signature contexts (e.g., SPHINCS+ [40]).
With parameters n = 256 bits and w = 4, our WOTS+

instantiation achieves the same NIST level-1 (128-bit classical
or approximately 64-bit quantum) security level as Dilithium-
2.

Consequently, the adversary’s forgery advantage is negligi-
ble, implying that the Looma scheme achieves the targeted
EUF-CMA security.
KeyDist Security. Looma minimizes trust in the KeyDist
service by treating it as an unauthenticated public repository
for Dilithium-2–signed public keys. Endpoints verify all key
records independently, ensuring that even a compromised
or malicious KeyDist cannot forge or inject invalid keys.
The worst-case impact is denial of service, not signature
forgery. KeyDist’s availability can be enhanced via conven-
tional replication, making this design both secure and scalable
for microservice-based infrastructures.

VII. IMPLEMENTATION

We present details regarding the implementation of Looma
(§ VII-A), and its integration with TLS 1.3 (§ VII-B).

A. Looma Implementation

Our Looma implementation in C uses a custom version
of WOTS+, integrating three modern hash function fami-

8

TABLE IV: Signature size and per-operation latency of WOTS+ signature across three modern hash families.

w ℓ
Sig/PK/SK

size (B) Key-gen (µs) Sign (µs) Verify (µs)

SHA256 BLAKE3 Haraka Haraka8x SHA256 BLAKE3 Haraka Haraka8x

2 265 8,480 35.57 47.23 11.90 7.18 0.62 20.45 23.12 6.43 4.60
4 133 4,256 51.17 68.60 15.26 10.10 0.38 26.82 36.33 8.64 6.43
8 90 2,880 79.42 106.49 22.94 15.42 0.29 72.86 95.33 19.93 13.98

16 67 2,144 128.01 169.33 35.73 24.61 0.25 58.89 83.77 17.16 13.50
32 55 1,760 213.03 290.00 60.45 43.09 0.24 198.58 271.58 52.60 38.63
64 45 1,440 353.73 475.80 99.21 71.07 0.21 308.46 434.51 97.51 70.12

O
nl

in
e

la
te

nc
y

(µ
s)

24

816

32
64

10

100

WOTS+ signature size (B)
2000 4000 6000 8000

Fig. 7: Signature size v.s. online computation latency of
WOTS+ implementation.

lies: SHA-256 [55] (from OpenSSL), BLAKE3 [56], and
Haraka [54]. We found the performance of WOTS+ signif-
icantly varies based on the chosen hash function and its
parameters.
WOTS+ Optimization. In WOTS+, each public key is derived
by iteratively hashing secret values ski ∈ SK up to w − 1
times (§ III-C), with the Winternitz parameter w determining
the length of these hash chains. For signing or verification,
the number of hashes per element varies based on the message
bits. By caching intermediate hash results during offline public
key generation, we significantly accelerate the online signing
phase (i.e., FastSign), converting it to fast memory-copy
operations that takes less than 1 µs. However, key generation
and verification still involve extensive hashing operations on
the critical path.
Choice of Hash Function. We benchmarked SHA-256,
BLAKE3, and Haraka with WOTS+ for signing and veri-
fying 32-byte messages (see Table IV). Haraka consistently
delivered the best performance, outperforming SHA-256 and
BLAKE3 by factors of 3–4. This performance advantage arises
from Haraka’s design, which specifically targets many small,
fixed-size hashes. SHA-256 ranks second due to OpenSSL’s
highly optimized assembly routines and minimal overhead. In
contrast, BLAKE3, despite its AVX2 acceleration, is optimized
for long messages. Its tree-based design enables highly parallel
processing when there is enough data to amortize the overhead,
but this additional structure introduces overhead on short,
fixed-size inputs, so it performs suboptimally in our setting.

We further optimize Looma by using an eight-way SIMD-
accelerated version of Haraka (Haraka8x), which leverages
AES-NI instructions. By carefully structuring data for SIMD

operations and minimizing branching, Haraka8x significantly
reduces latency in both key generation and verification.
Choice of Winternitz Parameter (w). The parameter w con-
trols the trade-off between signature size and computational
overhead in WOTS+. Larger values of w compress signatures
but increase computational cost due to longer hash chains.
Conversely, smaller values yield faster computation but larger
signatures. As shown in Table IV and Figure 7, increasing
from w = 2 to w = 4 results in only a modest latency penalty
(approximately 1.8 µs) but significantly reduces signature size
(by approximately 50%). However, increasing w further to 8
triples the verification latency relative to w = 4, rendering it
impractical for latency-sensitive scenarios. Thus, our optimal
configuration adopts Haraka8x with w = 4, balancing com-
pactness and computational efficiency.
Bloom Filter Configuration. Based on the data points in
§ IV-A, we target a Bloom filter configured for up to 15
peers—a threshold that covers more than 99% of bursts in
typical microservice deployments while still leaving headroom
for infrequent outliers. In a standalone microbenchmark using
the Barrust Bloom-filter library [57] with a 56-byte (448-bit)
bitmap and k = 20 non-cryptographic hash probes, we mea-
sure an empirical false-positive rate of pobs ≈ 7.6 × 10−4%.
The computational cost of each membership check is negligi-
ble compared to the rest of the TLS handshake: membership
lookups complete in about 280 ns on average (and remain
under 1 µs for random lookups), several orders of magnitude
below the cost of PQ signature verification and the overall
handshake latency.

B. Integration with TLS

To evaluate candidate PQ signature algorithms, we rely on
the OQS provider [58] available in OpenSSL 3.2.0. To
comprehensively evaluate our design, we incorporate classical
signatures, PQ candidates, and our own Looma into Pi-
cotls [59], a lightweight and modular TLS 1.3 implementation
leveraging OpenSSL as its cryptographic backend. Picotls
is selected over direct modification of OpenSSL due to its
well-defined support for custom authentication callbacks and
efficient reuse of OpenSSL’s optimized cryptographic primi-
tives. This modular approach enables clean benchmarking and
rapid iteration of handshake variants without impacting legacy
protocol components or the broader OpenSSL code base.

Our implementation is transparent to applications, allowing
any existing Picotls-based application to adopt our enhanced

9

TABLE V: Hardware and OS details.

Server-A2 AMD EPYC 9555P CPU @ 384 GB RAM
Server-I2 2×Intel Xeon Gold 5418N CPUs @ 128 GB RAM
NIC/Switch NVIDIA ConnectX-7 / NVIDIA SN3700 100Gbps
Software Ubuntu 24.04.1 LTS w/ Linux 6.8.0-49-generic kernel

PQ authentication without source code modifications. Picotls
is already widely adopted in HTTP/3 deployments [60], [61],
offering a realistic testbed for practical evaluation and straight-
forward extension of our PQ authentication enhancements to
modern transport protocols such as QUIC [62].

VIII. EVALUATION

We evaluate Looma in comparison to other candidate sig-
nature schemes.
Testbed. We use two pairs of identical machines—denoted
A2 and I2—with their configurations detailed in Table V.
Although we discuss key results with both setups in this
section, due to space limit, plots for I2 experiment appear
in Appendix A. The KeyDist service runs on a separate
third machine (§ VIII-E). Network bandwidth is never the
limiting factor. We use the default MTU of 1,500 B (com-
mon in public clouds such as AWS and Azure)3. We use
clock_gettime(CLOCK_MONOTONIC) to timestamp rel-
evant events accurately.
Baselines. We compare Looma against NIST’s PQ
schemes—Dilithium-2, Falcon-512, and SPHINCS+—and
against classic signatures: RSA-2048 and ECDSA over
secp256r1. We also evaluated Ed25519, but as its
performance is comparable to ECDSA, we omit it from the
figures. We target 128-bit classical security and NIST Level
1 PQ security. RSA-3072 offers 128-bit classical security,
but we show RSA-2048 results due to its wide deployment
and faster signature operations.4 Classic schemes like RSA
and ECDSA/Ed25519 would offer 0 bits of security in a PQ
setting.
Looma Configuration. Looma employs WOTS+ with
Haraka8x and Winternitz parameter w = 4. A dedicated CPU
core runs the background plane to sustain key provisioning
throughput. We use a Merkle tree of size 1024.
TLS Setup. All experiments use full TLS 1.3 handshakes
in 1-RTT mode. We exclude PSK-resumption handshakes,
as they bypass authentication. We evaluate both server-side
authenticated TLS (sTLS) and mutual TLS (mTLS), with X.509
certificates issued by a CA. The key-exchange method is
uniform across schemes: X25519 ECDH on Curve25519.
Classic certificates are signed with RSA by the CA; PQ
certificates use Dilithium-2. We do not model certificate re-
vocation, assuming short-lived certificates to avoid CRL or
OCSP overhead.

3With a larger MTU (e.g., 9 K B), Looma ’s advantages increase slightly,
since ServerHello messages fit into one packet, reducing host-stack overheads.

4On our A2 testbed, RSA-3072 sTLS/mTLS handshakes average
860.2/1966.7 µs, with sign/verify operations costing 570.5/29.3 µs.

sTLS Handshake Latency (µs)

Looma
Falcon512

ECDSA
RSA

Dilithium2
SPHINCS

C
D

F

0

0.5

1.0

200 500 1k 10k 20k

mTLS Handshake Latency (µs)

Looma
Falcon512

ECDSA
RSA

Dilithium2
SPHINCS

C
D

F

0

0.5

1.0

200 500 1k 20k 30k

Fig. 8: sTLS (top) and mTLS (bottom) handshake-latency
CDFs. (Summary in Table VI).

A. Basic Handshake Latency

We measure the end-to-end TLS handshake latency
of Looma and several baselines by timing from the
ClientHello to the completion of the handshake, following
the methodology of [63]. This metric reflects the latency a
client incurs before establishing a secure tunnel, excluding
the TCP handshake. For each signature scheme, the client and
server perform 10,000 sequential connection establishments.
To mitigate cache-warm effects, we precede the main loop
with a client-side warm-up phase and randomize the execution
order of algorithms in each trial: for every trial, we shuffle the
list of candidate schemes and run the batch for each in that
randomized order.

Figure 8 plots the cumulative distribution function of hand-
shake latencies, and Table VI reports mean and key percentiles
for the A2 setup. In the sTLS case (top), Looma outperforms
the fastest classic baseline, ECDSA, by 32 % at the 50th
percentile (P50) and 11 % at the 99th percentile (P99). Against
the fastest PQ baseline, Dilithium-2, Looma reduces latency by
37 % at P50 and 42 % at P99. In the mTLS scenario (bottom),
Looma achieves 16 % and 14 % improvements over ECDSA at
P50 and P99, respectively, and 20 % and 33 % improvements
over Dilithium-2. While Falcon-512 and RSA incur higher
latencies in both modes, SPHINCS+ is markedly slower. We
therefore omit SPHINCS+ from the comparisons in § VIII-C
and § VIII-D.

Results in the I2 setup exhibit a similar trend, with all
schemes experiencing approximately 2.5× higher handshake
latencies (see Figure 12 and Table X in Appendix A).

B. Authentication Latency

To confirm the source of Looma’s low handshake la-
tency, we measure the per-operation cost of each signature
scheme. We execute 100,000 signing and verification oper-
ations, reporting the averages for both A2 and I2 setups
in Table VII. Across all schemes, Intel-based systems ex-
hibit approximately 1.2–1.5× higher per-operation times than

10

TABLE VI: TLS handshake latency summary (µs).

Signature Algorithm sTLS mTLS

Mean St. Dev. P50 P99 Mean St. Dev. P50 P99

RSA-2048 842.4 206.3 900 1,427 1,095.4 179.2 1,112 1,656
ECDSA-256 422.0 38.9 416 513 462.6 38.6 449 555
ED25519 417.6 47.4 411 511 429.3 57.0 432 534

Dilithium-2 499.9 106.2 485 837 560.5 112.4 548 902
Falcon-512 778.9 117.6 801 902 969.9 56.6 963 1,066
SPHINCS+ SHA256-128f-simple 13,358.5 3,611.7 12,725 18,894 35,289.7 1,264.3 35,471 36,099

Looma 354.9 42.3 348 447 363.6 46.2 363 464

TABLE VII: Sign and verification latency (in µs).

I2 A2

Algorithm Sign Verify Sign Verify

RSA-2048 261.1 19.3 200.7 15.4
ECDSA-256 21.1 62.6 14.9 40.8
Ed25519 27.6 85.2 18.7 54.4
Dilithium-2 61.4 24.4 51.4 21.3
Falcon-512 181.1 34.3 149.2 28.3
SPHINCS+-SHA2-128f 6866.2 524.9 5611.6 426.3
Looma 0.39 6.83 0.32 6.19

2.5 5.0 7.5 10.0 12.5
Rate (1K handshakes per second)

0

2

4

6

La
te

nc
y

(m
s)

sTLS
Looma P50 Looma P99 Dilithium2 P50 Dilithium2 P99

2.5 5.0 7.5 10.0 12.5
0.0

2.5

5.0

7.5

10.0

12.5 mTLS

Fig. 9: Handshake latency over increasing request rates for
sTLS (left) and mTLS (right).

AMD-based systems, indicating the impact of microarchitec-
tural differences on cryptographic performance. Both results
confirm that Looma substantially reduces both signing and
verification overhead. This improvement allows Looma to
outperform classic ECDSA and the PQ baseline Dilithium-2.
These timings align closely with our implementation strategy
(see § VII), validating the efficiency gains of the online/offline
paradigm.

C. Concurrent Handshake Latency

We next evaluate end-to-end handshake latency under vary-
ing request rates and, as a result, server load. High request
rates create backlogs at the server software stack, increasing
the latency. In this experiment, the server uses a single thread
while the client spawns as many threads as needed to issue
and process the handshake requests at the target rate.

Figure 9 plots P50 and P99 latency of Looma and Dilithium-
2, the fastest PQ baseline. As the request rate approaches
the maximum capacity, the P50 and P99 latencies begin to
increase, and their spike indicates that the rate has reached

the limit. Looma maintains lower latency than Dilithium-2
and sustains near-basic handshake latency (see § VIII-A) up
to higher request rates for both sTLS and mTLS. Dilithium-2
fails to meet the target rate beyond 8k requests per second
(RPS) in sTLS case and 5.5 kRPS in mTLS case, whereas
Looma continues to serve requests, showing small P99 latency
increase in sTLS or peaking at 7.5 kRPS in mTLS.

D. Peak Throughput

Having demonstrated Looma ’s latency benefits, we now
evaluate its peak handshake throughput under two cloud-
relevant scenarios: many clients stressing a single server
(many-to-one) and a single client contacting many servers
(one-to-many).

1) Many-to-One Scenario: Here, we describe the many-
to-one setup. In this experiment, the server runs four threads
while the client scales from four to 32 threads to generate load.
Each client thread issues 20 concurrent TLS/TCP handshakes,
closing each connection immediately after handshake comple-
tion. Figure 10 (top: sTLS; bottom: mTLS) plots throughput
and latency as client threads increase in A2 setup, and results
in I2 setup can be found in Figure 13 in Appendix. In
both sTLS and mTLS, the server is nearly saturated at 8
client threads, as throughput is almost reaching its maximum.
Beyond this point, additional client threads only increase
latency, as requests accumulate in the backlog.

a) sTLS: In A2, Looma outperforms the best PQ base-
line, Dilithium-2, by 4 % to 13 % in throughput and reduces
P50 and P99 latency by 24 % to 38 % and 3 % to 11 %,
respectively. In I2, throughput gains reach 6 % to 37 %, with
latency down by 13 % to 29 % at P50 and −16 % to 35 %
at P99. The negative P99 latency improvement with 4 threads
arises because Looma serves 36 % more requests with a larger
request backlog. Overall, we observe that Looma simultane-
ously improves throughput and latency in most cases.

b) mTLS: Under mTLS, Looma achieves 8 % to 22 %
higher throughput in A2 and 29 % to 36 % in I2 versus
Dilithium-2. P50 latency drops by 29 % to 34 % (A2) and 25 %
to 31 % (I2); P99 latency improves by −21 % to 18 % (A2) and
21 % to 32 % (I2), respectively, with the lone negative case
again due to higher throughput at low thread counts. ECDSA
shows a similar pattern, with negative P99 improvements only
against slower schemes.

11

Looma
Falcon512

ECDSA
RSA

Dilithium2
C

on
ns

 /
se

co
nd

0

10k

20k

Number of clients
4 8 12 16 20 24 28 32

(a) Throughput (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

10k

20k

Number of clients
4 8 12 16 20 24 28 32

(b) P50 latency (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

20k

40k

60k

Number of clients
4 8 12 16 20 24 28 32

(c) P99 latency (sTLS)

Looma
Falcon512

ECDSA
RSA

Dilithium2

C
on

ns
 /

se
co

nd

0

10k

20k

Number of clients
4 8 12 16 20 24 28 32

(d) Throughput (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

10k

20k

Number of clients
4 8 12 16 20 24 28 32

(e) P50 latency (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

20k

40k

60k

Number of clients
4 8 12 16 20 24 28 32

(f) P99 latency (mTLS)

Fig. 10: Many-to-one: handshake throughput and latency as the number of concurrent clients increases. Looma maintains low
latency while delivering the highest throughput.

Overall, these results confirm that Looma delivers superior
handshake throughput without sacrificing latency.

2) One-to-Many Scenario: Next, we evaluate a scenario
where a single client concurrently authenticates with many
servers. To emulate this, the client runs a single thread, while
each of 32 server threads accepts connections. The client then
increases its number of simultaneous TCP/TLS handshakes,
creating a backlog on the client side, since handshake requests
are distributed across multiple server threads.

a) sTLS: Figure 11 (top) shows sTLS throughput and
latency for the A2 setup (I2 trends are similar). Looma
outperforms the strongest PQ baseline, Dilithium-2, by 6 %
to 23 % (A2) and 7 % to 21 % (I2) in throughput. P50 latency
improves by 5 % to 23 % (A2) and 13 % to 22 % (I2), and
P99 by 12 % to 33 % (A2) and 21 % to 30 % (I2). We also
observe that ECDSA and Falcon-512 perform worse under
heavy sTLS load; because the client only verifies signatures
in sTLS, verification dominates latency, and ECDSA/Falcon-
512 have the slowest verify times (see Table VII).

b) mTLS: Figure 11 (bottom) presents mTLS results.
Here, Looma’s throughput gains over Dilithium-2 grow to
40 % to 52 % (A2) and 27 % to 42 % (I2). P50 latency drops
by 35 % to 44 % (A2) and 24 % to 36 % (I2), and P99 by 34 %
to 42 % (A2) and 35 % to 41 % (I2).

The larger mTLS improvements stem from increased client-
side signing: mTLS requires both signing and verification, and
PQ signing is significantly more expensive than verification
(see Table VII). Looma ’s online/offline optimization strategy
therefore yields greater relative gains when signing dominates.
In contrast, the many-to-one scenario was server-bound, so
Looma ’s verification efficiency drove similar improvements
in both sTLS and mTLS.

E. Key-Provisioning Overhead

1) KeyDist: KeyDist organizes pre-signed keys into batches
of 1,024 keys stored as 4 MB files. We implement the KeyDist
server using Nginx [64] to serve these files and evaluate
its provisioning capacity by issuing requests from another
machine over 128 concurrent connections, emulating many
endpoints. The KeyDist server runs on a machine equipped
with an Intel Xeon Silver 4314 CPU and a Samsung PM9A3
NVMe SSD, while clients run on one of the A2 machines.
We confirmed that the server sustains 2.69 K file requests
per second, corresponding to 21.5 K keys per second per
client. Since the maximum key-consumption rate at a single
endpoint is 2.75 K keys per second (derived from the average
Looma mTLS handshake latency in Table VI), these results
indicate that a single KeyDist instance can comfortably support
hundreds of endpoints even under aggressive key usage.

To sustain this rate for 20 minutes, a KeyDist server requires
approximately 1.24 TiB of key material. This space can be re-
claimed after the corresponding keys are consumed or expire.
For reference, the NVMe SSD we use costs approximately
$241.82 per TiB.

2) Endpoints: We evaluate the computational and storage
overhead at each endpoint as follows.

a) KeyGen: We found that each endpoint can generate
keys efficiently—about 41,000 key pairs per second on a single
dedicated CPU core with our Looma configuration (§ VII-A).
A full KeyGen cycle (roughly 24.4 ms) for a batch of 1024
key pairs includes (i) key-pair generation, (ii) hashing 1023
internal nodes, (iii) one Dilithium-2 root signature, and (iv)
computing 1024 inclusion proofs. That works out to just
23.8 µs per key pair on average, which aligns perfectly with
the results in Table IV. There, WOTS+ key generation is
the dominant contributor to latency, while the costs of tree

12

Looma
Falcon512

ECDSA
RSA

Dilithium2
C

on
ns

 /
se

co
nd

0
2k
4k
6k
8k

Number of servers
4 8 12 16 20 24 28 32

(a) Throughput (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

1k

2k

Number of servers
4 8 12 16 20 24 28 32

(b) P50 latency (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

2k

4k

Number of servers
4 8 12 16 20 24 28 32

(c) P99 latency (sTLS)

Looma
Falcon512

ECDSA
RSA

Dilithium2

C
on

ns
 /

se
co

nd

0
2k
4k
6k
8k

Number of servers
4 8 12 16 20 24 28 32

(d) Throughput (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

2k

4k

6k

Number of servers
4 8 12 16 20 24 28 32

(e) P50 latency (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

5k

10k

Number of servers
4 8 12 16 20 24 28 32

(f) P99 latency (mTLS)

Fig. 11: One-to-many: handshake throughput and latency as the number of concurrent servers increases. Looma sustains low
latency even while scaling throughput.

construction and root signing are spread across many keys.
The offline artifacts occupy (≈17 MB) in total.

b) KeyFetch: Refreshing key records from KeyDist re-
quires one Dilithium-2 verification plus Merkle tree construc-
tion over 1024 leaves, for a total of 0.33 ms. After validation,
the 1024 public keys (≈4.16 MB) are retained.

c) Impact: Both tasks run off-path. The only visible
delay occurs during initial instance bootstrap (≈ 24 ms), which
is negligible compared to typical cloud-service startup times.
The memory footprints of FastSign (17 MB) and FastVerify
(4 MB) together represent under 2% of a 1 GB RAM allocation
and under 1% of a 2 GB container—acceptable overhead in
modern cloud deployments. In modern cloud infrastructures
with multi-gigabit network fabrics, network bandwidth costs
are acceptable.

F. Cache Misses

We evaluate the performance of two fallback strategies
under cache-miss conditions. Recall that cache misses are
specific to mTLS, because they arise only when the server
fails to refresh a client’s public key in time and thus has
to process a dual signature in hybrid or dual-sig mode (see
§ V-C). Table VIII reports the handshake latency for cache-hit
and -miss cases in A2.

To understand this, we microbenchmark the signing and
verification costs and confirm that verifying a dual signature
adds only about 23 µs compared to verifying a WOTS+ sig-
nature in the cache-hit case. This gap is consistent with the
cost of verifying a Dilithium-2 signature (see Table VII). Note
that both cache-hit and cache-miss cases benefit from the fast
signing time enabled by WOTS+ (≈0.32 µs), in sharp contrast
to Dilithium-2, which requires 50 µs to 60 µs per signing op-
eration. Consequently, Looma maintains a substantial latency

TABLE VIII: Handshake latency with cache misses (in µs).
Hybrid-Hit case is identical to the mTLS case in Table VI

mTLS Detail

Fallback Hit/Miss Mean St. Dev. P50 P99 Sign Verify

Hybrid Hit 363.6 46.2 363 464 0.32 6.19
Miss 367.7 48.3 365 468 0.32 29.72

Dual-sig Hit 365.7 48.0 365 462 0.32 6.12
Miss 367.3 45.7 366 460 0.32 29.51

advantage over Dilithium-2 and other baselines even when
cache misses occur.

IX. DISCUSSION

Applicability to Hybrid PQTLS and KEMTLS. Looma
accelerates the signature-based authentication step in TLS 1.3
without altering the key exchange mechanism, making it
compatible with classical ECDHE, hybrid ECDHE+KEM, and
pure KEM-based exchanges. Hybrid PQTLS [65], [66], [67] is
a transitional approach that combines classical ECDHE with
PQ KEMs in TLS 1.3 key exchange, while retaining flexi-
bility in the authentication phase (e.g., using classical or PQ
signatures). Looma can substitute traditional signature algo-
rithms such as RSA/ECDSA or PQ signatures (e.g., Dilithium,
Falcon) with its online/offline variant. With appropriate con-
figuration, Looma integrates seamlessly with hybrid PQTLS,
reducing authentication overhead in both classical and PQ
settings. However, Looma is not applicable to KEMTLS [31],
which replaces signature-based authentication with KEM-
based endpoint authentication.
Applicability to Other Encryption Protocols. While we
have evaluated Looma in the context of regular sTLS
and mTLS over TCP, its benefits extend to other systems

13

that retain a TLS-style handshake. For example, datapath-
encryption frameworks such as Google’s PSP [68], kernel-
TLS (kTLS) [69], and SMT [70] all perform a TLS 1.3–style
handshake in user space; replacing their authentication paths
with Looma’s online/offline paradigm would directly reduce
their connection-setup latency.

The advantage of Looma is even more pronounced in pro-
tocols that already shave off a round trip. QUIC—potentially
adopted in serverless platforms for faster function invoca-
tion [71]—eliminates one RTT compared to TLS/TCP, so
per-handshake signing overhead is highlighted. By integrating
Looma into QUIC (e.g., via Picotls), one could recover much
of that cost, yielding faster secure channel establishment.
Offload Support. By decoupling expensive signing computa-
tions, Looma naturally enables offload to accelerator devices.
For example, SmartNICs [26] or remote TLS proxies with
special purpose CPU cores [27] can pre-compute and verify
WOTS key material and inclusion proofs outside the hand-
shake process on the host CPUs.

X. RELATED WORK

We have already discussed TLS handshake acceleration in
§ II-B and signature schemes in § III. We discuss the rest here.

a) TLS datapath acceleration: TLS acceleration for user
data transfer (i.e., after the handshake) has been widely ex-
plored, and those techniques are complementary to Looma.
Facebook introduced offloading TLS to the kernel in data-
centers [72], while keeping the handshake in user-space and
letting the application to register the negotiated keys to the
kernel for subsequent cryptographic operations, which is called
kTLS [73]. Cisco/Cilium uses it for their network observability
service [74], [75]. NVIDIA NICs support offloading kTLS
processing in the NIC [76].

b) Datacenter-friendly signature: The recently proposed
DSig [77] introduces a µs-scale hybrid signature implemen-
tation and apply it in datacenter distributed systems that
manage frequent transactions and prioritize auditability, such
as Byzantine fault-tolerant broadcast systems. It achieves low
latency and high throughput by letting a singer pre-send a
list of hash-based public keys (signed by a traditional digital
signature scheme EdDSA) to the verifier, which allows a
verifier pre-verify the public key list before it receives a signed
message. It inspires our design to deploy such online-offline
paradigm into datacenter TLS.

c) Related work beyond TLS 1.3: Several systems pursue
conceptually similar ideas—shifting computational cost or
leveraging offline work—but target different protocols or goals
than TLS 1.3 handshake authentication. Reverse SSL [78]
protects TLS 1.2 servers against DoS attacks by using an
online/offline RSA-based signing approach to reduce server-
side workload, while introducing client puzzles to throttle
adversaries—at the expense of increased client-side handshake
overhead. Waters et al. [79] propose outsourcing and pre-
computing puzzle effort to improve DoS resilience in general
networked systems, not TLS specifically; their techniques
apply across layers (e.g., IP, TCP or application protocols) to

redistribute computational burden. Delegated Credentials [80]
enable a certificate holder to delegate TLS authentication by
signing short-lived keys, thereby limiting key exposure. This
sign-and-distribute pattern also appears in our key provisioning
design, which similarly issues time-bounded public keys to
balance security and performance.

XI. CONCLUSION

To cope with the computational overheads posed by modern
security requirements in datacenters—mutual authentication
and quantum resistance, this paper explored a new approach
to fast TLS handshake. Based on the observation that the
PQ signature scheme exhibits costly sign and cheap verify
performance characteristics, we designed, implemented and
evaluated a new digital signature architecture, Looma. The
implementation of Looma and benchmark tools used in this
paper are available at https://github.com/uoenoplab/looma.

XII. ETHICS CONSIDERATIONS

We have considered the risks and benefits of this research
and, to the best of our knowledge, it raises no ethical con-
cerns. All experiments were conducted on isolated testbeds
using open-source software; no human subjects, user data, or
sensitive information were involved.

ACKNOWLEDGEMENT

This work was in part supported by EPSRC grant
EP/V053418/1, Royal Society Research Grant, and gift from
Google and NetApp.

REFERENCES

[1] D. of Physics at Oxford, “New world record for qubit operation
accuracy,” 9 June 2025. [Online]. Available: https://www.physics.ox.ac.
uk/news/new-world-record-qubit-operation-accuracy

[2] D. Castelvecchi, “‘A truly remarkable breakthrough’: Google’s new
quantum chip achieves accuracy milestone.” Dec. 2024. [Online].
Available: https://www.nature.com/articles/d41586-024-04028-3

[3] H. Neven, “Meet willow, our state-of-the-art quantum chip,”
Dec. 2024. [Online]. Available: https://blog.google/technology/research/
google-willow-quantum-chip/

[4] K. John, “Ibm starling: 20,000x faster than
today’s quantum computers,” Jun. 2025. [On-
line]. Available: https://www.forbes.com/sites/johnkoetsier/2025/06/10/
ibm-starling-20000x-faster-than-todays-quantum-computers/

[5] C. Gidney, “How to factor 2048 bit rsa integers with less
than a million noisy qubits,” 2025. [Online]. Available: https:
//arxiv.org/abs/2505.15917

[6] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[7] M. Campagna, “Hybrid-key exchanges as an interim-to-permanent so-
lution to cryptographic agility,” 2019.

[8] K. Kwiatkowski, “Towards Post-Quantum Cryptography in TLS,” https:
//blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/, June
2019.

[9] K. Kwiatkowski and L. Valenta, “The TLS Post-Quantum Experiment,”
https://blog.cloudflare.com/the-tls-post-quantum-experiment/, Oct.
2019.

[10] A. Langley, “CECPQ1 results,” https://www.imperialviolet.org/2016/11/
28/cecpq1.html, Nov. 2016.

[11] ——, “CECPQ2,” https://www.imperialviolet.org/2018/12/12/cecpq2.
html, Dec. 2018.

[12] ——, “Post-quantum confidentiality for TLS,” https://www.
imperialviolet.org/2018/04/11/pqconftls.html, April. 2018.

14

https://github.com/uoenoplab/looma
https://www.physics.ox.ac.uk/news/new-world-record-qubit-operation-accuracy
https://www.physics.ox.ac.uk/news/new-world-record-qubit-operation-accuracy
https://www.nature.com/articles/d41586-024-04028-3
https://blog.google/technology/research/google-willow-quantum-chip/
https://blog.google/technology/research/google-willow-quantum-chip/
https://www.forbes.com/sites/johnkoetsier/2025/06/10/ibm-starling-20000x-faster-than-todays-quantum-computers/
https://www.forbes.com/sites/johnkoetsier/2025/06/10/ibm-starling-20000x-faster-than-todays-quantum-computers/
https://arxiv.org/abs/2505.15917
https://arxiv.org/abs/2505.15917

[13] Twitter, “Rebuilding twitter’s public api,” https://blog.x.com/
engineering/en us/topics/infrastructure/2020/rebuild twitter public
api 2020, 2020.

[14] Uber, “Rewriting uber engineering: The opportunities
microservices provide,” https://www.uber.com/en-GB/blog/
building-tincup-microservice-implementation/, 2016.

[15] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017, pp. 283–298.

[16] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious {Multi-Party} machine learning
on trusted processors,” in 25th USENIX Security Symposium (USENIX
Security 16), 2016, pp. 619–636.

[17] D. Dehigama, S. Jesalpura, A. Katsarakis, M. Kogias, R. Kumar, and
B. Grot, “Composing microservices and serverless for load resilience,”
in The 2nd Workshop on SErverless Systems, Applications and MEthod-
ologies, 2024.

[18] Istio, “istio/istio: Connect, secure, control, and observe services,” https:
//github.com/istio/istio.

[19] Linkerd, “linkerd/linkerd2: Ultralight, security-first service mesh for
kubernetes,” https://github.com/linkerd/linkerd2.

[20] H. Saokar, S. Demetriou, N. Magerko, M. Kontorovich, J. Kirstein,
M. Leibold, D. Skarlatos, H. Khandelwal, and C. Tang, “ServiceRouter:
Hyperscale and minimal cost service mesh at meta,” in 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
23). Boston, MA: USENIX Association, Jul. 2023, pp. 969–985.

[21] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the
performance limits of datacenter networks,” in 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22). Renton,
WA: USENIX Association, Apr. 2022, pp. 51–70.

[22] Y. Liu, W. Li, Y. Li, L. Suo, X. Gao, X. Xie, S. Chen, Z. Fan, W. Qu, and
G. Liu, “Fork: A dual congestion control loop for small and large flows
in datacenters,” in Proceedings of the Twentieth European Conference on
Computer Systems, ser. EuroSys ’25. New York, NY, USA: Association
for Computing Machinery, 2025, p. 446–459.

[23] D. Gibson, H. Hariharan, E. Lance, M. McLaren, B. Montazeri,
A. Singh, S. Wang, H. M. G. Wassel, Z. Wu, S. Yoo, R. Balasubra-
manian, P. Chandra, M. Cutforth, P. Cuy, D. Decotigny, R. Gautam,
A. Iriza, M. M. K. Martin, R. Roy, Z. Shen, M. Tan, Y. Tang, M. Wong-
Chan, J. Zbiciak, and A. Vahdat, “Aquila: A unified, low-latency fabric
for datacenter networks,” in 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). Renton, WA: USENIX
Association, Apr. 2022, pp. 1249–1266.

[24] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM
’10. New York, NY, USA: Association for Computing Machinery,
2010, p. 63–74.

[25] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “{SSLShader}:
Cheap {SSL} acceleration with commodity processors,” in 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
11), 2011.

[26] D. Kim, S. Lee, and K. Park, “A case for smartnic-accelerated private
communication,” in Proceedings of the 4th Asia-Pacific Workshop on
Networking, 2020, pp. 30–35.

[27] E. Song, Y. Song, C. Lu, T. Pan, S. Zhang, J. Lu, J. Zhao, X. Wang,
X. Wu, M. Gao et al., “Canal mesh: A cloud-scale sidecar-free multi-
tenant service mesh architecture,” in Proceedings of the ACM SIG-
COMM 2024 Conference, 2024, pp. 860–875.

[28] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://www.rfc-editor.
org/info/rfc8446

[29] P. Eronen, H. Tschofenig, H. Zhou, and J. A. Salowey, “Transport
Layer Security (TLS) Session Resumption without Server-Side State,”
RFC 5077, Jan. 2008. [Online]. Available: https://www.rfc-editor.org/
info/rfc5077

[30] S. Lim, H. Lee, H. Kim, H. Lee, and T. Kwon, “Ztls: A dns-based
approach to zero round trip delay in tls handshake,” in Proceedings of
the ACM Web Conference 2023, 2023, pp. 2360–2370.

[31] P. Schwabe, D. Stebila, and T. Wiggers, “Post-quantum tls without hand-
shake signatures,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp. 1461–1480.

[32] J. Zhang, J. Huang, L. Zhao, D. Chen, and Ç. K. Koç, “{ENG25519}:
Faster {TLS} 1.3 handshake using optimized x25519 and ed25519,”
in 33rd USENIX Security Symposium (USENIX Security 24), 2024, pp.
6381–6398.

[33] D. J. Bernstein, B. B. Brumley, M.-S. Chen, and N. Tuveri,
“{OpenSSLNTRU}: Faster post-quantum {TLS} key exchange,” in 31st
USENIX security symposium (USENIX Security 22), 2022, pp. 845–862.

[34] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature
scheme.” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 1,
pp. 238–268, 2018.

[35] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, Z. Zhang et al., “Falcon:
Fast-fourier lattice-based compact signatures over ntru,” Submission to
the NIST’s post-quantum cryptography standardization process, vol. 36,
no. 5, pp. 1–75, 2018.

[36] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederha-
gen, L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-
O’Hearn, “Sphincs: practical stateless hash-based signatures,” in Annual
international conference on the theory and applications of cryptographic
techniques. Springer, 2015, pp. 368–397.

[37] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signa-
tures,” in Conference on the Theory and Application of Cryptology.
Springer, 1989, pp. 263–275.

[38] ——, “On-line/off-line digital signatures,” Journal of Cryptology, vol. 9,
no. 1, pp. 35–67, 1996.

[39] A. Hülsing, “W-ots+–shorter signatures for hash-based signature
schemes,” in Progress in Cryptology–AFRICACRYPT 2013: 6th Inter-
national Conference on Cryptology in Africa, Cairo, Egypt, June 22-24,
2013. Proceedings 6. Springer, 2013, pp. 173–188.

[40] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld,
and P. Schwabe, “The sphincs+ signature framework,” in Proceedings
of the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2129–2146.

[41] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: eXtended Merkle Signature Scheme,” RFC 8391, May 2018.
[Online]. Available: https://www.rfc-editor.org/info/rfc8391

[42] F. Du, J. Shi, Q. Chen, P. Pang, L. Li, and M. Guo, “Generating
microservice graphs with production characteristics for efficient resource
scaling,” 2025.

[43] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “The state of serverless appli-
cations: Collection, characterization, and community consensus,” IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 4152–4166,
2021.

[44] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 2003.

[45] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Annual International Cryptology Conference. Springer, 2001, pp.
355–367.

[46] S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap,” RFC 6071, Feb. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6071

[47] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://www.rfc-editor.
org/info/rfc8446

[48] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[49] A. C.-C. Yao and Y. Zhao, “Online/offline signatures for low-power
devices,” IEEE Transactions on Information Forensics and Security,
vol. 8, no. 2, pp. 283–294, 2012.

[50] J. K. Liu, J. Baek, J. Zhou, Y. Yang, and J. W. Wong, “Efficient
online/offline identity-based signature for wireless sensor network,”
International Journal of Information Security, vol. 9, pp. 287–296, 2010.

[51] M. R. Albrecht, N. Gama, J. Howe, and A. K. Narayanan, “Post-
quantum online/offline signatures,” Cryptology ePrint Archive, Paper
2025/117, 2025. [Online]. Available: https://eprint.iacr.org/2025/117

[52] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[53] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal on
computing, vol. 17, no. 2, pp. 281–308, 1988.

15

https://blog.x.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://blog.x.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://blog.x.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://www.uber.com/en-GB/blog/building-tincup-microservice-implementation/
https://www.uber.com/en-GB/blog/building-tincup-microservice-implementation/
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/linkerd/linkerd2
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc5077
https://www.rfc-editor.org/info/rfc5077
https://www.rfc-editor.org/info/rfc8391
https://www.rfc-editor.org/info/rfc6071
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9000
https://eprint.iacr.org/2025/117

[54] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger, “Haraka
v2–efficient short-input hashing for post-quantum applications,” IACR
Transactions on Symmetric Cryptology, pp. 1–29, 2016.

[55] W. Penard and T. Van Werkhoven, “On the secure hash algorithm
family,” Cryptography in context, pp. 1–18, 2008.

[56] J.-P. Aumasson, S. Neves, J. O’Connor, and Z. Wilcox, “The BLAKE3
Hashing Framework,” Internet Engineering Task Force, Internet-Draft
draft-aumasson-blake3-00, Jul. 2024, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/draft-aumasson-blake3/00/

[57] Tyler Barrus, “Bloom filter implementation written in c,” https://github.
com/barrust/bloom.

[58] O. Q. Safe, “Oqs provider,” https://github.com/open-quantum-safe/
oqs-provider.

[59] G. repo, “H2O-picotls project,” https://github.com/h2o/picotls.
[60] H2O, “quickly,” https://github.com/h2o/quicly.
[61] Private-octopus, “Picoquic,” https://github.com/private-octopus/

picoquic.
[62] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed

and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[63] D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Post-quantum au-
thentication in tls 1.3: A performance study,” Cryptology ePrint Archive,
2020.

[64] I. Sysoev and I. NGINX, “nginx web server,” https://nginx.org/, ac-
cessed: 27 November 2025.

[65] T. Reddy.K and H. Tschofenig, “Post-Quantum Cryptography
Recommendations for TLS-based Applications,” Internet Engineering
Task Force, Internet-Draft draft-ietf-uta-pqc-app-00, Sep. 2025,
work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/draft-ietf-uta-pqc-app/00/

[66] D. Stebila, S. Fluhrer, and S. Gueron, “Hybrid key exchange in
TLS 1.3,” Internet Engineering Task Force, Internet-Draft draft-ietf-
tls-hybrid-design-16, Sep. 2025, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/16/

[67] Amazon Web Services, “Using hybrid post-quantum TLS with
AWS KMS,” https://docs.aws.amazon.com/kms/latest/developerguide/
pqtls.html, Nov. 2019.

[68] N. Dukkipati, N. Bansod, C. Zhao, Y. Li, J. Bhat, S. Saleem,
and A. S. Jain, “Falcon: A reliable and low latency hardware
transport,” The Technical Conference on Linux Networking
(Netdev 0x18), https://netdevconf.info/0x18/sessions/talk/
introduction-to-falcon-reliable-transport.html, 2024.

[69] D. Watson, “KTLS: Linux kernel transport layer security,” in Netdev
1.2, Tokyo, Japan, 2016. [Online]. Available: https://netdevconf.info/1.
2/papers/ktls.pdf

[70] T. Gao, X. Ma, S. Narreddy, E. Luo, S. W. D. Chien, and M. Honda,
“Designing transport-level encryption for datacenter networks,” in IEEE
Symposium on Security and Privacy (SP). IEEE, 2026, pp. 1502–1519.

[71] K. Hou, S. Lin, Y. Chen, and V. Yegneswaran, “Qfaas: accelerating and
securing serverless cloud networks with quic,” in Proceedings of the
13th Symposium on Cloud Computing, 2022, pp. 240–256.

[72] T. Herbert, “Data center networking stack,” The Technical Conference
on Linux Networking (Netdev 1.2), https://legacy.netdevconf.info/1.2/
session.html?tom-herbert/, 2016.

[73] “Kernel tls offload,” https://www.kernel.org/doc/html/latest/networking/
tls-offload.html.

[74] J. Fastabend, “Seamless transparent encryption with bpf and cilium,”
Linux Plumbers Conference 2019.

[75] D. Borkmann and J. Fastabend, “Combining ktls and bpf for introspec-
tion and policy enforcement,” Linux Plumbers Conference 2018.

[76] B. Pismenny, H. Eran, A. Yehezkel, L. Liss, A. Morrison, and D. Tsafrir,
“Autonomous nic offloads,” in Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2021, pp. 18–35.

[77] M. K. Aguilera, C. Burgelin, R. Guerraoui, A. Murat, A. Xygkis,
and I. Zablotchi, “DSig: Breaking the barrier of signatures in data
centers,” in 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). Santa Clara, CA: USENIX Association,
jul 2024, pp. 667–685.

[78] K. Bicakci, B. Crispo, and A. S. Tanenbaum, “Reverse ssl: Improved
server performance and dos resistance for ssl handshakes,” IACR
Cryptology ePrint Archive, Tech. Rep. 2006/212, 2006. [Online].
Available: https://eprint.iacr.org/2006/212

sTLS Handshake Latency (µs)

Looma
Falcon512

ECDSA
RSA

Dilithium2
SPHINCS

C
D

F

0

0.5

1.0

500 1k 2k 20k

mTLS Handshake Latency (µs)

Looma
Falcon512

ECDSA
RSA

Dilithium2
SPHINCS

C
D

F

0

0.5

1.0

500 1k 2k 50k

Fig. 12: sTLS (top) and mTLS (bottom) Handshake-latency
CDFs on I2.

[79] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten, “New client
puzzle outsourcing techniques for DoS resistance,” in Proceedings of the
11th ACM Conference on Computer and Communications Security (CCS
’04). Washington, DC, USA: Association for Computing Machinery,
2004, pp. 246–256.

[80] R. Barnes, S. Iyengar, N. Sullivan, and E. Rescorla, “Delegated
Credentials for TLS and DTLS,” RFC 9345, Jul. 2023. [Online].
Available: https://www.rfc-editor.org/info/rfc9345

APPENDIX

This section presents detailed experimental results from the
I2 setup, complementing the A2 results reported in § VII
and § VIII. Figure 12 shows the CDFs of sTLS and mTLS
handshake latency on I2 (corresponding to Figure 8). Table IX
reports the WOTS+ storage and latency trade-offs on I2, as
a counterpart to Table IV. Table X summarizes the basic
handshake latency on I2, complementing Table VI. Figure 13
and Figure 14 present throughput and latency when scaling
the number of clients and servers on I2 (corresponding to
Figure 10 and Figure 11). Finally, Table XI shows the end-to-
end handshake latency with cache misses on I2.

16

https://datatracker.ietf.org/doc/draft-aumasson-blake3/00/
https://github.com/barrust/bloom
https://github.com/barrust/bloom
https://www.rfc-editor.org/info/rfc9000
https://nginx.org/
https://datatracker.ietf.org/doc/draft-ietf-uta-pqc-app/00/
https://datatracker.ietf.org/doc/draft-ietf-uta-pqc-app/00/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/16/
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html
https://netdevconf.info/0x18/sessions/talk/introduction-to-falcon-reliable-transport.html
https://netdevconf.info/0x18/sessions/talk/introduction-to-falcon-reliable-transport.html
https://netdevconf.info/1.2/papers/ktls.pdf
https://netdevconf.info/1.2/papers/ktls.pdf
https://legacy.netdevconf.info/1.2/session.html?tom-herbert/
https://legacy.netdevconf.info/1.2/session.html?tom-herbert/
https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://eprint.iacr.org/2006/212
https://www.rfc-editor.org/info/rfc9345

TABLE IX: WOTS+ storage and latency for three hash families (N = 32B) on I2.

w ℓ
Sig/PK/SK

size (B) Key-gen (µs) Sign (µs) Verify (µs)

SHA256 BLAKE3 Haraka Haraka8x SHA256 BLAKE3 Haraka Haraka8x

2 265 8,480 34.67 61.17 15.97 9.17 0.86 16.36 31.54 8.04 5.82
4 133 4,256 44.23 87.24 19.08 12.76 0.53 21.33 41.56 9.51 7.08
8 90 2,880 67.22 134.43 27.53 19.16 0.49 61.26 129.82 24.32 18.24

16 67 2,144 105.78 215.34 42.64 30.08 0.35 55.94 128.81 22.53 17.76
32 55 1,760 180.75 361.07 70.82 55.46 0.33 160.33 321.39 67.17 51.15
64 45 1,440 295.13 597.74 117.18 90.26 0.29 279.21 528.91 113.31 86.68

TABLE X: Handshake latency: server-only authentication vs. mutual authentication (µs) on I2.

Signature Algorithm
sTLS mTLS

Mean St. Dev. P50 P99 Mean St. Dev. P50 P99

RSA 2048 2,102.5 351.0 2,091 3,243 2,740.9 284.2 2,721 3,950
ECDSA 256 1,062.6 152.1 1,073 1,484 1,260.9 177.9 1,200 1,645
ED25519 1,077.1 133.3 1,082 1,452 1,225.7 159.3 1,174 1,518

Dilithium II 1,238.5 262.3 1,195 1,978 1,441.3 256.3 1,411 2,187
Falcon 512 1,846.7 179.9 1,784 2,262 2,225.4 176.7 2,207 2,509
SPHINCS+ SHA256-128f-simple 21,804.8 2,930.2 20,961 30,258 43,461.0 4,579.8 43,030 54,165

Looma 877.3 113.3 887 1235 952.2 128.5 930 1266

Looma
Falcon512

ECDSA
RSA

Dilithium2

C
on

ns
 /

se
co

nd

0

10k

20k

Number of clients
4 8 12 16 20 24 28 32

(a) Throughput (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

20k

40k

Number of clients
4 8 12 16 20 24 28 32

(b) P50 latency (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

50k

100k

150k

Number of clients
4 8 12 16 20 24 28 32

(c) P99 latency (sTLS)

Looma
Falcon512

ECDSA
RSA

Dilithium2

C
on

ns
 /

se
co

nd

0

5k

10k

15k

Number of clients
4 8 12 16 20 24 28 32

(d) Throughput (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

20k

40k

60k

Number of clients
4 8 12 16 20 24 28 32

(e) P50 latency (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

50k

100k

150k

Number of clients
4 8 12 16 20 24 28 32

(f) P99 latency (mTLS)

Fig. 13: Handshake throughput over increasing numbers of clients on I2. Latency plots show Looma achieves low latency
while achieving the highest throughput.

TABLE XI: Handshake latency with cache misses (in µs) on
I2. Hybrid-Hit case is identical to the mTLS case in Table X

mTLS Detail

Fallback Hit/Miss Mean St. Dev. P50 P99 Sign Verify

Hybrid Hit 952.2 128.5 930 1266 0.39 6.83
Miss 954.6 128.6 933 1270 0.39 36.38

Dual-sig Hit 958.7 129.4 933 1273 0.39 6.65
Miss 958.6 168.3 933 1272 0.39 36.26

17

Looma
Falcon512

ECDSA
RSA

Dilithium2

C
on

ns
 /

se
co

nd

0

2k

4k

6k

Number of client connections
4 8 12 16 20 24 28 32

(a) Throughput (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

2k

4k

Number of servers
4 8 12 16 20 24 28 32

(b) P50 latency (sTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

5k

10k

Number of client connections
4 8 12 16 20 24 28 32

(c) P99 latency (sTLS)

Looma
Falcon512

ECDSA
RSA

Dilithium2

C
on

ns
 /

se
co

nd

0

2k

4k

6k

Number of servers
4 8 12 16 20 24 28 32

(d) Throughput (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

5k

10k

Number of servers
4 8 12 16 20 24 28 32

(e) P50 latency (mTLS)

Looma
ECDSA
Dilithium2

Falcon512
RSA

La
te

nc
y

(µ
s)

0

10k

20k

Number of clients
4 8 12 16 20 24 28 32

(f) P99 latency (mTLS)

Fig. 14: Handshake throughput over increasing number of servers on I2. Latency plots show Looma does not sacrifice latency
for high throughput.

18

	Introduction
	Motivation
	Why Fast (PQ)TLS Handshake Matters in the Cloud?
	Existing TLS Handshake Accelerations
	What We Focus: PQ Authentication and Costs

	Preliminaries
	Digital Signatures
	Online/offline Signature Paradigm
	Winternitz One-Time Signature Plus

	Design Space
	TLS Ecosystem in the Cloud
	Design Scope
	Design Choice

	Looma Design
	Looma Architecture
	Foreground Plane: Fast Authentication
	Signing Operation
	Verification Operation

	Fallback Strategy
	Background Plane: Key Provisioning
	KeyDist Service
	Key Generation
	Key Fetching

	Security Analysis
	Implementation
	Looma Implementation
	Integration with TLS

	Evaluation
	Basic Handshake Latency
	Authentication Latency
	Concurrent Handshake Latency
	Peak Throughput
	Many-to-One Scenario
	One-to-Many Scenario

	Key‐Provisioning Overhead
	KeyDist
	Endpoints

	Cache Misses

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	References
	Appendix

